Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 375(6581): eabj3944, 2022 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-35143306

RESUMO

Human oocytes are prone to assembling meiotic spindles with unstable poles, which can favor aneuploidy in human eggs. The underlying causes of spindle instability are unknown. We found that NUMA (nuclear mitotic apparatus protein)-mediated clustering of microtubule minus ends focused the spindle poles in human, bovine, and porcine oocytes and in mouse oocytes depleted of acentriolar microtubule-organizing centers (aMTOCs). However, unlike human oocytes, bovine, porcine, and aMTOC-free mouse oocytes have stable spindles. We identified the molecular motor KIFC1 (kinesin superfamily protein C1) as a spindle-stabilizing protein that is deficient in human oocytes. Depletion of KIFC1 recapitulated spindle instability in bovine and aMTOC-free mouse oocytes, and the introduction of exogenous KIFC1 rescued spindle instability in human oocytes. Thus, the deficiency of KIFC1 contributes to spindle instability in human oocytes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cinesinas/deficiência , Oócitos/fisiologia , Oócitos/ultraestrutura , Fuso Acromático/fisiologia , Polos do Fuso/fisiologia , 1-Alquil-2-acetilglicerofosfocolina Esterase/metabolismo , Animais , Bovinos , Complexo Dinactina/metabolismo , Dineínas/metabolismo , Feminino , Humanos , Cinesinas/genética , Cinesinas/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/fisiologia , Centro Organizador dos Microtúbulos/ultraestrutura , Microtúbulos/metabolismo , Proteínas Recombinantes/metabolismo , Fuso Acromático/ultraestrutura , Polos do Fuso/ultraestrutura , Suínos
2.
Dev Cell ; 57(2): 197-211.e3, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-35030327

RESUMO

During female meiosis I (MI), spindle positioning must be tightly regulated to ensure the fidelity of the first asymmetric division and faithful chromosome segregation. Although the role of F-actin in regulating these critical processes has been studied extensively, little is known about whether microtubules (MTs) participate in regulating these processes. Using mouse oocytes as a model system, we characterize a subset of MT organizing centers that do not contribute directly to spindle assembly, termed mcMTOCs. Using laser ablation, STED super-resolution microscopy, and chemical manipulation, we show that mcMTOCs are required to regulate spindle positioning and faithful chromosome segregation during MI. We discuss how forces exerted by F-actin on the spindle are balanced by mcMTOC-nucleated MTs to anchor the spindle centrally and to regulate its timely migration. Our findings provide a model for asymmetric cell division, complementing the current F-actin-based models, and implicate mcMTOCs as a major player in regulating spindle positioning.


Assuntos
Centro Organizador dos Microtúbulos/fisiologia , Oócitos/metabolismo , Fuso Acromático/fisiologia , Citoesqueleto de Actina/fisiologia , Actinas/fisiologia , Animais , Divisão Celular Assimétrica/fisiologia , Segregação de Cromossomos/fisiologia , Feminino , Meiose/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Oócitos/fisiologia , Fuso Acromático/metabolismo
3.
Elife ; 102021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34605406

RESUMO

Non-centrosomal microtubule-organizing centers (MTOCs) are pivotal for the function of multiple cell types, but the processes initiating their formation are unknown. Here, we find that the transcription factor myogenin is required in murine myoblasts for the localization of MTOC proteins to the nuclear envelope. Moreover, myogenin is sufficient in fibroblasts for nuclear envelope MTOC (NE-MTOC) formation and centrosome attenuation. Bioinformatics combined with loss- and gain-of-function experiments identified induction of AKAP6 expression as one central mechanism for myogenin-mediated NE-MTOC formation. Promoter studies indicate that myogenin preferentially induces the transcription of muscle- and NE-MTOC-specific isoforms of Akap6 and Syne1, which encodes nesprin-1α, the NE-MTOC anchor protein in muscle cells. Overexpression of AKAP6ß and nesprin-1α was sufficient to recruit endogenous MTOC proteins to the nuclear envelope of myoblasts in the absence of myogenin. Taken together, our results illuminate how mammals transcriptionally control the switch from a centrosomal MTOC to an NE-MTOC and identify AKAP6 as a novel NE-MTOC component in muscle cells.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Centro Organizador dos Microtúbulos/fisiologia , Células Musculares/metabolismo , Miogenina/metabolismo , Células 3T3 , Animais , Linhagem Celular , Células HEK293 , Humanos , Camundongos , Células Musculares/citologia , Membrana Nuclear
4.
J Cell Biol ; 220(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34550316

RESUMO

The first mitosis of the mammalian embryo must partition the parental genomes contained in two pronuclei. In rodent zygotes, sperm centrosomes are degraded, and instead, acentriolar microtubule organizing centers and microtubule self-organization guide the assembly of two separate spindles around the genomes. In nonrodent mammals, including human or bovine, centrosomes are inherited from the sperm and have been widely assumed to be active. Whether nonrodent zygotes assemble a single centrosomal spindle around both genomes or follow the dual spindle self-assembly pathway is unclear. To address this, we investigated spindle assembly in bovine zygotes by systematic immunofluorescence and real-time light-sheet microscopy. We show that two independent spindles form despite the presence of centrosomes, which had little effect on spindle structure and were only loosely connected to the two spindles. We conclude that the dual spindle assembly pathway is conserved in nonrodent mammals. This could explain whole parental genome loss frequently observed in blastomeres of human IVF embryos.


Assuntos
Centrossomo/fisiologia , Fuso Acromático/fisiologia , Zigoto/fisiologia , Animais , Bovinos , Embrião de Mamíferos/fisiologia , Genoma/fisiologia , Masculino , Centro Organizador dos Microtúbulos/fisiologia , Microtúbulos/fisiologia , Mitose/fisiologia , Transdução de Sinais/fisiologia , Espermatozoides/fisiologia
5.
Life Sci Alliance ; 4(11)2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34535568

RESUMO

Proliferation of Plasmodium falciparum in red blood cells is the cause of malaria and is underpinned by an unconventional cell division mode, called schizogony. Contrary to model organisms, P. falciparum replicates by multiple rounds of nuclear divisions that are not interrupted by cytokinesis. Organization and dynamics of critical nuclear division factors remain poorly understood. Centriolar plaques, the centrosomes of P. falciparum, serve as microtubule organizing centers and have an acentriolar, amorphous structure. The small size of parasite nuclei has precluded detailed analysis of intranuclear microtubule organization by classical fluorescence microscopy. We apply recently developed super-resolution and time-lapse imaging protocols to describe microtubule reconfiguration during schizogony. Analysis of centrin, nuclear pore, and microtubule positioning reveals two distinct compartments of the centriolar plaque. Whereas centrin is extranuclear, we confirm by correlative light and electron tomography that microtubules are nucleated in a previously unknown and extended intranuclear compartment, which is devoid of chromatin but protein-dense. This study generates a working model for an unconventional centrosome and enables a better understanding about the diversity of eukaryotic cell division.


Assuntos
Centrossomo/fisiologia , Espaço Intranuclear/metabolismo , Microtúbulos/metabolismo , Divisão Celular/fisiologia , Linhagem Celular , Centrossomo/metabolismo , Cromatina , Citocinese , Humanos , Centro Organizador dos Microtúbulos/fisiologia , Microtúbulos/fisiologia , Poro Nuclear , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo
6.
Mol Biol Cell ; 32(17): 1545-1556, 2021 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-34191538

RESUMO

Neutrophils migrate in response to chemoattractants to mediate host defense. Chemoattractants drive rapid intracellular cytoskeletal rearrangements including the radiation of microtubules from the microtubule-organizing center (MTOC) toward the rear of polarized neutrophils. Microtubules regulate neutrophil polarity and motility, but little is known about the specific role of MTOCs. To characterize the role of MTOCs on neutrophil motility, we depleted centrioles in a well-established neutrophil-like cell line. Surprisingly, both chemical and genetic centriole depletion increased neutrophil speed and chemotactic motility, suggesting an inhibitory role for centrioles during directed migration. We also found that depletion of both centrioles and GM130-mediated Golgi microtubule nucleation did not impair neutrophil directed migration. Taken together, our findings demonstrate an inhibitory role for centrioles and a resilient MTOC system in motile human neutrophil-like cells.


Assuntos
Centríolos/metabolismo , Microtúbulos/metabolismo , Neutrófilos/metabolismo , Animais , Linhagem Celular , Movimento Celular , Citoesqueleto/fisiologia , Complexo de Golgi/metabolismo , Células HEK293 , Humanos , Centro Organizador dos Microtúbulos/fisiologia , Microtúbulos/fisiologia
7.
Reproduction ; 161(5): V19-V22, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33843613

RESUMO

Unlike in mice, multinucleated blastomeres appear at a high frequency in the two-cell-stage embryos in humans. In this Point of View article, we demonstrate that the first mitotic spindle formation led by sperm centrosome-dependent microtubule organizing centers may cause a high incidence of zygotic division errors using human tripronuclear zygotes.


Assuntos
Centrossomo/fisiologia , Centro Organizador dos Microtúbulos/fisiologia , Espermatozoides/fisiologia , Fuso Acromático/fisiologia , Zigoto/fisiologia , Humanos , Masculino
8.
Elife ; 92020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33295871

RESUMO

The switch from centrosomal microtubule-organizing centers (MTOCs) to non-centrosomal MTOCs during differentiation is poorly understood. Here, we identify AKAP6 as key component of the nuclear envelope MTOC. In rat cardiomyocytes, AKAP6 anchors centrosomal proteins to the nuclear envelope through its spectrin repeats, acting as an adaptor between nesprin-1α and Pcnt or AKAP9. In addition, AKAP6 and AKAP9 form a protein platform tethering the Golgi to the nucleus. Both Golgi and nuclear envelope exhibit MTOC activity utilizing either AKAP9, or Pcnt-AKAP9, respectively. AKAP6 is also required for formation and activity of the nuclear envelope MTOC in human osteoclasts. Moreover, ectopic expression of AKAP6 in epithelial cells is sufficient to recruit endogenous centrosomal proteins. Finally, AKAP6 is required for cardiomyocyte hypertrophy and osteoclast bone resorption activity. Collectively, we decipher the MTOC at the nuclear envelope as a bi-layered structure generating two pools of microtubules with AKAP6 as a key organizer.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas do Citoesqueleto/metabolismo , Complexo de Golgi/fisiologia , Centro Organizador dos Microtúbulos/fisiologia , Miócitos Cardíacos/metabolismo , Membrana Nuclear/fisiologia , Proteínas de Ancoragem à Quinase A/genética , Animais , Antígenos/genética , Antígenos/metabolismo , Linhagem Celular , Proteínas do Citoesqueleto/genética , Regulação da Expressão Gênica , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteoclastos/metabolismo , Ratos , Ratos Sprague-Dawley
9.
Mol Biol Cell ; 31(12): 1206-1217, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32267211

RESUMO

Errors during meiotic resumption in oocytes can result in chromosome missegregation and infertility. Several cell cycle kinases have been linked with roles in coordinating events during meiotic resumption, including polo-like kinases (PLKs). Mammals express four kinase-proficient PLKs (PLK1-4). Previous studies assessing the role of PLK1 have relied on RNA knockdown and kinase inhibition approaches, as Plk1 null mutations are embryonically lethal. To further assess the roles of PLK1 during meiotic resumption, we developed a Plk1 conditional knockout (cKO) mouse to specifically mutate Plk1 in oocytes. Despite normal oocyte numbers and follicle maturation, Plk1 cKO mice were infertile. From analysis of meiotic resumption, Plk1 cKO oocytes underwent nuclear envelope breakdown with the same timing as control oocytes. However, Plk1 cKO oocytes failed to form compact bivalent chromosomes, and localization of cohesin and condensin were defective. Furthermore, Plk1 cKO oocytes either failed to organize α-tubulin or developed an abnormally small bipolar spindle. These abnormalities were attributed to aberrant release of the microtubule organizing center (MTOC) linker protein, C-NAP1, and the failure to recruit MTOC components and liquid-like spindle domain (LISD) factors. Ultimately, these defects result in meiosis I arrest before homologous chromosome segregation.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Segregação de Cromossomos/fisiologia , Oócitos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Proteínas de Ciclo Celular/fisiologia , Cromossomos/metabolismo , Cromossomos/fisiologia , Feminino , Meiose/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Centro Organizador dos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Fuso Acromático/metabolismo , Tubulina (Proteína)/metabolismo
10.
Nat Cell Biol ; 22(3): 297-309, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32066907

RESUMO

Non-centrosomal microtubule-organizing centres (ncMTOCs) have a variety of roles that are presumed to serve the diverse functions of the range of cell types in which they are found. ncMTOCs are diverse in their composition, subcellular localization and function. Here we report a perinuclear MTOC in Drosophila fat body cells that is anchored by the Nesprin homologue Msp300 at the cytoplasmic surface of the nucleus. Msp300 recruits the microtubule minus-end protein Patronin, a calmodulin-regulated spectrin-associated protein (CAMSAP) homologue, which functions redundantly with Ninein to further recruit the microtubule polymerase Msps-a member of the XMAP215 family-to assemble non-centrosomal microtubules and does so independently of the widespread microtubule nucleation factor γ-Tubulin. Functionally, the fat body ncMTOC and the radial microtubule arrays that it organizes are essential for nuclear positioning and for secretion of basement membrane components via retrograde dynein-dependent endosomal trafficking that restricts plasma membrane growth. Together, this study identifies a perinuclear ncMTOC with unique architecture that regulates microtubules, serving vital functions.


Assuntos
Membrana Basal/metabolismo , Núcleo Celular , Centro Organizador dos Microtúbulos/fisiologia , Actinas/fisiologia , Animais , Membrana Celular , Núcleo Celular/ultraestrutura , Centrossomo , Drosophila/metabolismo , Drosophila/ultraestrutura , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/fisiologia , Dineínas/fisiologia , Endossomos/metabolismo , Corpo Adiposo/metabolismo , Corpo Adiposo/ultraestrutura , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/fisiologia , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Associadas aos Microtúbulos/fisiologia , Centro Organizador dos Microtúbulos/ultraestrutura , Microtúbulos/fisiologia , Proteínas Musculares/metabolismo , Tubulina (Proteína)/fisiologia
11.
Cells ; 8(7)2019 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-31295970

RESUMO

Centrosomes and primary cilia are usually considered as distinct organelles, although both are assembled with the same evolutionary conserved, microtubule-based templates, the centrioles. Centrosomes serve as major microtubule- and actin cytoskeleton-organizing centers and are involved in a variety of intracellular processes, whereas primary cilia receive and transduce environmental signals to elicit cellular and organismal responses. Understanding the functional relationship between centrosomes and primary cilia is important because defects in both structures have been implicated in various diseases, including cancer. Here, we discuss evidence that the animal centrosome evolved, with the transition to complex multicellularity, as a hybrid organelle comprised of the two distinct, but intertwined, structural-functional modules: the centriole/primary cilium module and the pericentriolar material/centrosome module. The evolution of the former module may have been caused by the expanding cellular diversification and intercommunication, whereas that of the latter module may have been driven by the increasing complexity of mitosis and the requirement for maintaining cell polarity, individuation, and adhesion. Through its unique ability to serve both as a plasma membrane-associated primary cilium organizer and a juxtanuclear microtubule-organizing center, the animal centrosome has become an ideal integrator of extracellular and intracellular signals with the cytoskeleton and a switch between the non-cell autonomous and the cell-autonomous signaling modes. In light of this hypothesis, we discuss centrosome dynamics during cell proliferation, migration, and differentiation and propose a model of centrosome-driven microtubule assembly in mitotic and interphase cells. In addition, we outline the evolutionary benefits of the animal centrosome and highlight the hierarchy and modularity of the centrosome biogenesis networks.


Assuntos
Centrossomo/metabolismo , Centrossomo/fisiologia , Cílios/metabolismo , Animais , Ciclo Celular , Diferenciação Celular , Centríolos/metabolismo , Centríolos/fisiologia , Cílios/genética , Humanos , Centro Organizador dos Microtúbulos/fisiologia , Microtúbulos/fisiologia , Mitose/genética , Organelas/metabolismo , Organelas/fisiologia
12.
PLoS Biol ; 16(8): e2005189, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30080857

RESUMO

Non-centrosomal microtubule organizing centers (ncMTOCs) are found in most differentiated cells, but how these structures regulate microtubule organization and dynamics is largely unknown. We optimized a tissue-specific degradation system to test the role of the essential centrosomal microtubule nucleators γ-tubulin ring complex (γ-TuRC) and AIR-1/Aurora A at the apical ncMTOC, where they both localize in Caenorhabditis elegans embryonic intestinal epithelial cells. As at the centrosome, the core γ-TuRC component GIP-1/GCP3 is required to recruit other γ-TuRC components to the apical ncMTOC, including MZT-1/MZT1, characterized here for the first time in animal development. In contrast, AIR-1 and MZT-1 were specifically required to recruit γ-TuRC to the centrosome, but not to centrioles or to the apical ncMTOC. Surprisingly, microtubules remain robustly organized at the apical ncMTOC upon γ-TuRC and AIR-1 co-depletion, and upon depletion of other known microtubule regulators, including TPXL-1/TPX2, ZYG-9/ch-TOG, PTRN-1/CAMSAP, and NOCA-1/Ninein. However, loss of GIP-1 removed a subset of dynamic EBP-2/EB1-marked microtubules, and the remaining dynamic microtubules grew faster. Together, these results suggest that different microtubule organizing centers (MTOCs) use discrete proteins for their function, and that the apical ncMTOC is composed of distinct populations of γ-TuRC-dependent and -independent microtubules that compete for a limited pool of resources.


Assuntos
Centrossomo/metabolismo , Centro Organizador dos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Animais , Aurora Quinase A , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/metabolismo , Centrossomo/fisiologia , Proteínas do Citoesqueleto/metabolismo , Células Epiteliais/metabolismo , Proteínas Associadas aos Microtúbulos , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/fisiologia , Proteínas Nucleares/metabolismo , Especificidade de Órgãos , Tubulina (Proteína)/metabolismo
13.
Nat Commun ; 9(1): 2952, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054463

RESUMO

In the first meiotic division (MI) of oocytes, the cortically positioned spindle causes bivalent segregation in which only the centre-facing homologue pairs are retained. 'Selfish' chromosomes are known to exist, which bias their spindle orientation and hence retention in the egg, a process known as 'meiotic drive'. Here we report on this phenomenon in oocytes from F1 hybrid mice, where parental strain differences in centromere size allows distinction of the two homologue pairs of a bivalent. Bivalents with centromere and kinetochore asymmetry show meiotic drive by rotating during prometaphase, in a process dependent on aurora kinase activity. Cortically positioned homologue pairs appear to be under greater stretch than their centre-facing partners. Additionally the cortex spindle-half contain a greater density of tubulin and microtubule organising centres. A model is presented in which meiotic drive is explained by the impact of microtubule force asymmetry on chromosomes with different sized centromeres and kinetochores.


Assuntos
Meiose/fisiologia , Centro Organizador dos Microtúbulos/fisiologia , Oócitos/fisiologia , Fuso Acromático/fisiologia , Tubulina (Proteína)/fisiologia , Animais , Aurora Quinases/metabolismo , Centrômero , Segregação de Cromossomos , Cromossomos/metabolismo , Citocalasina B/antagonistas & inibidores , Feminino , Cinetocoros/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Microinjeções , Microtúbulos/fisiologia , Proteínas Nucleares/metabolismo , Oócitos/citologia , Oócitos/efeitos dos fármacos
14.
Elife ; 72018 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-29809148

RESUMO

Non-centrosomal microtubule organizing centers (MTOCs) are important for microtubule organization in many cell types. In fission yeast Schizosaccharomyces pombe, the protein Mto1, together with partner protein Mto2 (Mto1/2 complex), recruits the γ-tubulin complex to multiple non-centrosomal MTOCs, including the nuclear envelope (NE). Here, we develop a comparative-interactome mass spectrometry approach to determine how Mto1 localizes to the NE. Surprisingly, we find that Mto1, a constitutively cytoplasmic protein, docks at nuclear pore complexes (NPCs), via interaction with exportin Crm1 and cytoplasmic FG-nucleoporin Nup146. Although Mto1 is not a nuclear export cargo, it binds Crm1 via a nuclear export signal-like sequence, and docking requires both Ran in the GTP-bound state and Nup146 FG repeats. In addition to determining the mechanism of MTOC formation at the NE, our results reveal a novel role for Crm1 and the nuclear export machinery in the stable docking of a cytoplasmic protein complex at NPCs.


Assuntos
Carioferinas/metabolismo , Centro Organizador dos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Poro Nuclear/fisiologia , Receptores Citoplasmáticos e Nucleares/metabolismo , Schizosaccharomyces/fisiologia , Transporte Ativo do Núcleo Celular , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citoplasma/metabolismo , Carioferinas/química , Carioferinas/genética , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Simulação de Acoplamento Molecular , Membrana Nuclear , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética , Proteínas de Schizosaccharomyces pombe/química , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Fuso Acromático
15.
Dev Cell ; 45(1): 83-100.e7, 2018 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-29634939

RESUMO

Human cytomegalovirus (HCMV), a leading cause of congenital birth defects, forms an unusual cytoplasmic virion maturation site termed the "assembly compartment" (AC). Here, we show that the AC also acts as a microtubule-organizing center (MTOC) wherein centrosome activity is suppressed and Golgi-based microtubule (MT) nucleation is enhanced. This involved viral manipulation of discrete functions of MT plus-end-binding (EB) proteins. In particular, EB3, but not EB1 or EB2, was recruited to the AC and was required to nucleate MTs that were rapidly acetylated. EB3-regulated acetylated MTs were necessary for nuclear rotation prior to cell migration, maintenance of AC structure, and optimal virus replication. Independently, a myristoylated peptide that blocked EB3-mediated enrichment of MT regulatory proteins at Golgi regions of the AC also suppressed acetylated MT formation, nuclear rotation, and infection. Thus, HCMV offers new insights into the regulation and functions of Golgi-derived MTs and the therapeutic potential of targeting EB3.


Assuntos
Núcleo Celular/fisiologia , Infecções por Citomegalovirus/virologia , Complexo de Golgi/virologia , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/fisiologia , Montagem de Vírus/fisiologia , Movimento Celular , Núcleo Celular/virologia , Células Cultivadas , Citomegalovirus/genética , Citomegalovirus/isolamento & purificação , Citomegalovirus/patogenicidade , Complexo de Golgi/fisiologia , Humanos , Proteínas Associadas aos Microtúbulos/genética , Centro Organizador dos Microtúbulos/virologia
16.
Curr Biol ; 28(8): 1311-1317.e3, 2018 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-29657114

RESUMO

Plant cells do not possess centrosomes, which serve as the microtubule organizing center in animal cells; how plant cell microtubule arrays are established and maintain their dynamics remain poorly understood [1]. The γ-tubulin complex and the katanin complex play central roles in the organization of plant cortical microtubules [2-6]. Previously, we reported that the augmin complex recruits the γ-tubulin complex to preexisting microtubules and initiates microtubule nucleation [7]. Moreover, we described how an intricate interaction between the katanin p60 subunit KTN1 and the p80 subunit KTN80 confers precise microtubule severing at either microtubule branching nucleation sites or crossovers [8]. Here, we observed that augmin preferentially localizes to microtubule crossovers. Live-cell observations and analyses revealed that, whereas a small portion of crossover-localized augmin complexes act to trigger nascent microtubule nucleation, the majority function in stabilizing the architecture of microtubule crossovers. Finally, genetic analyses and computational modeling confirmed that suppression of augmin activity elevates microtubule severing frequency and facilitates the formation of aligned microtubule arrays. Combined, our findings reveal an unexpected role of augmin and demonstrate that augmin antagonizes katanin-mediated microtubule severing. Furthermore, we propose a novel mechanism for how augmin determines self-organization of plant cortical microtubules by preventing microtubule severing at crossovers in addition to triggering microtubule nucleation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Katanina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/fisiologia , Adenosina Trifosfatases/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/fisiologia , Proteínas Associadas aos Microtúbulos/fisiologia , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Células Vegetais/metabolismo , Plantas/metabolismo , Tubulina (Proteína)/metabolismo
17.
DNA Cell Biol ; 37(4): 291-297, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29431512

RESUMO

The mitotic spindle, assembled by microtubule organization center (MTOC), is a critical structure required for proper chromosome segregation during mitosis. Studies demonstrated that defects of mitotic spindle assembling would result in chromosome instability, associating with oncogenesis. In this study, we identified that heparanase (HPSE) was localized on MTOC in mitotic cells. Induced expression of HPSE in human airway epithelial cells promoted mitotic spindle formation, and silencing of HPSE expression disrupted the mitotic spindle formation, resulting in chromosome instability, including chromosome mis-segregation and increased micronuclei formation. In conclusion, HPSE is an important protein in regulation of mitotic spindle and loss of HPSE function on MTOC associates with chromosome instability, indicating that loss of HPSE on MTOC may play critical roles in oncogenesis.


Assuntos
Instabilidade Cromossômica/fisiologia , Glucuronidase/metabolismo , Proteínas de Ciclo Celular/genética , Linhagem Celular , Segregação de Cromossomos/fisiologia , Cromossomos/fisiologia , Células Epiteliais/metabolismo , Glucuronidase/fisiologia , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/fisiologia , Microtúbulos/metabolismo , Mitose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Fuso Acromático/metabolismo , Fuso Acromático/fisiologia
18.
J Cell Biol ; 217(1): 231-249, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29162624

RESUMO

Extrusion of apoptotic cells from epithelial tissues requires orchestrated morphological rearrangements of the apoptotic cell and its neighbors. However, the connections between the apoptotic cascade and events leading to extrusion are not fully understood. Here, we characterize an apoptotic extrusion apical actin ring (EAAR) that is assembled within the apoptotic cell and drives epithelial extrusion. Caspase-mediated cleavage of myotonic dystrophy kinase-related CDC42-binding kinase-α (MRCKα) triggers a signaling pathway that leads to the assembly of EAAR that pulls actin bundles, resulting in the compaction and removal of the cell body. We provide a detailed portrait of the EAAR including F-actin flow, the contribution of myosin contraction, and actin polymerization at bundles' terminals when the product of MRCKα cleavage is expressed. These results add to our understanding of the mechanisms controlling the process of epithelial extrusion by establishing a causal relationship between the triggering events of apoptosis, the activation of MRCKα, and its subsequent effects on the dynamics of actomyosin cytoskeleton rearrangement.


Assuntos
Actomiosina/metabolismo , Apoptose/fisiologia , Caspases/metabolismo , Células Epiteliais/metabolismo , Miotonina Proteína Quinase/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Animais , Células CACO-2 , Miosinas Cardíacas/metabolismo , Linhagem Celular , Cães , Células HEK293 , Células HeLa , Humanos , Células Madin Darby de Rim Canino , Centro Organizador dos Microtúbulos/fisiologia , Cadeias Leves de Miosina/metabolismo , Miosinas/metabolismo , Transdução de Sinais/fisiologia , Quinases Associadas a rho/metabolismo
19.
Mol Biol Cell ; 28(10): 1361-1378, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28331073

RESUMO

The organization of the microtubule cytoskeleton is dictated by microtubule nucleators or organizing centers. Toxoplasma gondii, an important human parasite, has an array of 22 regularly spaced cortical microtubules stemming from a hypothesized organizing center, the apical polar ring. Here we examine the functions of the apical polar ring by characterizing two of its components, KinesinA and APR1, and show that its putative role in templating can be separated from its mechanical stability. Parasites that lack both KinesinA and APR1 (ΔkinesinAΔapr1) are capable of generating 22 cortical microtubules. However, the apical polar ring is fragmented in live ΔkinesinAΔapr1 parasites and is undetectable by electron microscopy after detergent extraction. Disintegration of the apical polar ring results in the detachment of groups of microtubules from the apical end of the parasite. These structural defects are linked to a diminished ability of the parasite to move and invade host cells, as well as decreased secretion of effectors important for these processes. Together the findings demonstrate the importance of the structural integrity of the apical polar ring and the microtubule array in the Toxoplasma lytic cycle, which is responsible for massive tissue destruction in acute toxoplasmosis.


Assuntos
Centro Organizador dos Microtúbulos/fisiologia , Toxoplasma/fisiologia , Animais , Citoesqueleto/fisiologia , Humanos , Microtúbulos/metabolismo , Microtúbulos/fisiologia , Parasitos/metabolismo , Parasitos/fisiologia , Proteínas de Protozoários/metabolismo , Toxoplasma/metabolismo , Toxoplasmose/metabolismo
20.
PLoS Comput Biol ; 12(10): e1005102, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27706163

RESUMO

Asters nucleated by Microtubule (MT) organizing centers (MTOCs) converge on chromosomes during spindle assembly in mouse oocytes undergoing meiosis I. Time-lapse imaging suggests that this centripetal motion is driven by a biased 'search-and-capture' mechanism. Here, we develop a model of a random walk in a drift field to test the nature of the bias and the spatio-temporal dynamics of the search process. The model is used to optimize the spatial field of drift in simulations, by comparison to experimental motility statistics. In a second step, this optimized gradient is used to determine the location of immobilized dynein motors and MT polymerization parameters, since these are hypothesized to generate the gradient of forces needed to move MTOCs. We compare these scenarios to self-organized mechanisms by which asters have been hypothesized to find the cell-center- MT pushing at the cell-boundary and clustering motor complexes. By minimizing the error between simulation outputs and experiments, we find a model of "pulling" by a gradient of dynein motors alone can drive the centripetal motility. Interestingly, models of passive MT based "pushing" at the cortex, clustering by cross-linking motors and MT-dynamic instability gradients alone, by themselves do not result in the observed motility. The model predicts the sensitivity of the results to motor density and stall force, but not MTs per aster. A hybrid model combining a chromatin-centered immobilized dynein gradient, diffusible minus-end directed clustering motors and pushing at the cell cortex, is required to comprehensively explain the available data. The model makes experimentally testable predictions of a spatial bias and self-organized mechanisms by which MT asters can find the center of a large cell.


Assuntos
Meiose/fisiologia , Centro Organizador dos Microtúbulos/fisiologia , Microtúbulos/fisiologia , Modelos Biológicos , Proteínas Motores Moleculares/fisiologia , Oócitos/fisiologia , Animais , Células Cultivadas , Simulação por Computador , Dineínas/fisiologia , Camundongos , Oócitos/citologia , Fuso Acromático/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...